Search for Supersymmetry in States with Large Missing Transverse Momentum and Three Leptons including a Z-Boson

Jet Goodson

Stony Brook University

April 17th, 2012

- I present a search for supersymmetric particle production
- Signature is 3 leptons (e or μ) and large E^{miss}_T, with 2 of the leptons forming a same-flavor, opposite-sign pair within 10 GeV of the Z mass
- The data was taken at the ATLAS Detector with pp-collisions provided by the Large Hadron Collider (LHC) in 2011
- An upper limit on the cross

section of processes beyond the standard model are set

 The results are also interpreted using General Gauge-Mediated (GGM) SUSY

Outline:

- Theoretical Motivation
- Experimental Apparatus
- Analysis
- Results
- Interpretation
- Future Studies

Supersymmetry (SUSY)

- Loop corrections to Standard m_H quadratically diverge
- SUSY adds partners fermion (boson) for each boson (fermion); "sparticles"
- Produces opposite sign contribution \rightarrow cancellation
- SUSY is broken 0.511 MeV charged bosons are not observed
- If sparticles have *m* ~ *O*(1 TeV), the terms cancel acceptably

Minimal Supersymmetric Standard Model (MSSM)

- Minimal additions necessary to bring supersymmetry into the Standard Model (SM)
- Higgs boson→ Higgs Multiplet, h⁰, H⁰, H[±], A⁰
- Higgsinos and gauginos mix to form charginos and neutralinos, χ[±]_{i=1,2}, χ̃⁰_{i=1,2,3,4}

R-Parity

- Sparticles provide channels for proton decay (right top)
- $\lambda_{\rm proton} > 10^{32}$ s, channels must be surpressed
- Sparticles get -1, SM particles get 1, multiplicative
- Results in Lightest Supersymmetric Particle (LSP)
- If weakly-interacting $\rightarrow E_{\mathrm{T}}^{\mathrm{miss}}$
- Bonus: LSP potentially Dark Matter candidate

General Gauge Mediation (GGM)

Wino co-NLSPs:

- $|m_2| \ll \mu$, $|m_2| < |m_1|$
- NLSP $\rightarrow \tilde{W}^0$ (wino)
- Charged wino, W[±], almost mass degenerate, effectively co-NLSPs
- $\tilde{W}^0 \to Z\tilde{G}, \ \tilde{W}^0 \to \gamma\tilde{G}$ and $\tilde{W}^{\pm} \to W^{\pm}\tilde{G}$

Z-rich Higgsino NLSP:

- $|\mu| \ll |m_1|, |m_2|$
- NLSP $\rightarrow \tilde{h}$
- Branching ratios for $\tilde{\chi}_1^0 \rightarrow Z\tilde{G}$ prominent

The prevalence of Z and W decays makes GGM intereresting from a multilepton analysis perspective

5 of 26

The CERN Accelerator Complex

- Designed for $\sqrt{s} = 14$ TeV energy & $L = 10^{34}$ cm⁻²s⁻¹
- 2011 operated at $\sqrt{s} = 7$ TeV CMS energy
- 2011 peak luminosity: 3.65 · 10³³ cm⁻²s⁻¹
- Delivered 5.61 fb⁻¹ of collisions in 2011

6 of 26

The ATLAS Detector

- \blacksquare Signal is defined by muons and electrons \rightarrow measured using much of the ATLAS sub-systems
- \blacksquare Also, ${\it E}_{\rm T}^{\rm miss}$ calls on every major subcomponent \rightarrow next slide...

What is $E_{ ext{T}}^{ ext{miss}}$ (missing transverse momentum/energy)

Dataset

- 2.06 fb⁻¹ of data used
- A good-runs-list is applied to our events, vetoing any event flagged as having detector problems during data taking and integrated luminosity used reflects this

Period	μ	$\int \mathcal{L} dt$ [pb ⁻¹]	Dates	$E_{\rm T}^{e}$ [GeV] trigger	p_{T}^{μ} [GeV] trigger
	(pp/crossing)				10
B,D	5.9 ± 1.3	175	22 March — 28 April	20	18
E-H	5.6 ± 1.2	863	30 April — 28 June	20	18
1	6.1 ± 1.5	307	13 July — 29 July	20	18
J	7.2 ± 1.8	214	30 July — 4 August	20	18
K	7.3 ± 1.9	503	4 August — 22 August	22	18

 $\boldsymbol{\mu}$ in this case is the average number of visible interactions per bunch crossing

Object Selections

Muons:

- Require combination of ID and MS measurements or
- ID and energy in calorimeter
- *p*_T >10 GeV
- I |η| < 2.4</p>
- Signal muons are required to be isolated from other momentum tracks

Jets:

- *p*_T >20 GeV
- $|\eta| < 2.8$

Electrons:

- Reconstructed from combined track and calorimeter cluster
- $E_{\rm T}$ >10 GeV
- |*n_{cl}*| < 2.47
- Signal electrons are required to be isolated from other energy deposits

Drell-Yan Rejection:

• Reject leptons with $M_{\ell^+\ell^-} < 20 \text{ GeV}$

Signal Region

- $N_{\rm lepton} = 3$, for signal leptons,
- $|m_{\ell^+\ell^-} m_Z| < 10$ GeV, for any same-flavor, opposite-charge lepton pair,
- $E_{\rm T}^{\rm miss} > 50$ GeV.

In a hadron collider, three leptons is a clean signal with little hadronic background

Good chance that anything new will stand out

11 of 26

Sensitivity — Higgsino Grid

Sensitivity — Wino Grid

Background Estimation — Matrix Method

Invert matrix and use:

 $N_{\text{RRF/RFR}/\text{RFF} \rightarrow \text{SSS}} = \epsilon_1 f_2 \cdot N_{\text{RRF}} + f_1 \epsilon_2 \cdot N_{\text{RFR}} + f_1 f_2 \cdot N_{\text{RFF}}$ to estimate the reducible background

Control	441/	77	14/7	Reducible	Total	Data	
Region	ττν	22	VVZ	Background	Background	Data	
Low- $E_{\mathrm{T}}^{\mathrm{miss}}$	1.4±0.6	6.7±1.8	61.2±15.0	55.9±35.2	125.2 ± 38.3	122	
high- $E_{ m T}^{ m miss}$	$0.7{\pm}0.6$	0.03±0.04	0.4±0.2	$13.5 {\pm} 8.7$	$14.7 {\pm} 8.7$	12	

14 of 26

$E_{\rm T}^{\rm miss}$ Performance

 $E_{\rm T}^{\rm miss}$ is important to this analysis; thus an effort is made to ensure it is well-behaved

Left, $E_{\rm T}^{\rm miss}$ linearity:

- Examined in MC
- $\bullet = (E_{T}^{\rm miss, True} E_{\rm T}^{\rm miss}) / E_{T}^{\rm miss, True}$
- Require $N_{\ell} = 3$

Right, $\sigma_{E_{\mathrm{T}}^{\mathrm{miss}}}$ vs ΣE_{T}

- Require $N_{\ell} = 3$
- E_x^{miss} & E_y^{miss} is binned in terms of ΣE_T^{EM} ; fit with Gaussian
- Resolution scaled by $\Sigma E_{\mathrm{T}}^{\mathrm{EM}} / \Sigma E_{\mathrm{T}}$

Systematics

MC Systematics:

	t₹V	ZZ	WZ	Total
Nominal	2.7	3.4	58.4	64.5
Statistical	±0.1	±0.4	±2.7	±2.7
JES	±0.1	±0.2	±0.2	±0.3
JER	±0.1	±0.0	±0.5	±0.5
EES	±0.0	±0.0	±0.8	±0.8
EER	±0.0	±0.0	±0.1	±0.1
MID	±0.1	±0.0	±1.1	±1.1
MMS	± 0.1	±0.0	±1.3	±1.3
ESF	±0.1	±0.1	±2.0	±2.0
MSF	±0.0	±0.0	±0.5	±0.5
Trigger	±0.0	±0.0	±0.2	±0.2
Btag	±0.0	±0.0	±0.0	±0.0
Pileup	±0.0	±0.1	±0.2	±0.2
LArhole	±0.0	±0.1	±0.0	±0.1
PDF	-	±0.6	±8.9	±9.0
Cross Section	±2.1	±0.2	±4.090	±4.6
TOTAL	±2.1	±0.8	±10.5	±11.0

Reducible Backgrounds:

- Fake rate uncertainty: 0.4-45%
- Fake-rate scale factors uncertainty: $30-50\% \oplus 10\% \oplus 10\%$
- Process Fraction: 50-200%

Signal Grid Systematics:

- Use MSTW 2008 NLO & CTEQ6.6M for scale & PDF uncertainties
- Set envelope $\sigma_{max} = \max(\text{CTEQ}, \text{MSTW}) \text{ and } \sigma_{min} = \min(\text{CTEQ}, \text{MSTW})$
- $\sigma_{\text{NLO}} = \frac{1}{2} \cdot (\sigma_{\text{max}} + \sigma_{\text{min}}) \pm \frac{1}{2} \cdot (\sigma_{\text{max}} \sigma_{\text{min}})$
- \blacksquare Higgsino Grid \sim 10%, Wino Grid \sim 15%

+7	77	14/7	Reducible	Total	Data	
"		VVZ	Background	Background	Data	
2.7 ± 2.1	$\textbf{3.4}\pm\textbf{0.8}$	58 ± 11	7.5 ± 3.9	72 ± 12	95	

- *p*-value of 0.06 (1.6σ) using the CL_s method
- Any model which contributes more than 49.1 events in excess of the SM background is excluded at the 95% confidence level (CL) (expected limit 29.0 events)
- Limit of 23.8 fb on the visible cross section at the 95% confidence level (CL) (14.1 fb expected)

Observed Data Distributions

Observed Data Distributions

19 of 26

GGM Interpretation of Results — Higgsino Grid

GGM Interpretation of Results — Wino Grid

Future Studies — Higgsino Grid

- \blacksquare 2011 total dataset \sim 5 fb^{-1}
- Next slide looks at exclusion potential for this expanded dataset
- Also look at alternative selections:
 - $\hfill\square$ Extending the $E_{\rm T}^{\rm miss}$ selection to $E_{\rm T}^{\rm miss}>$ 100 GeV (keep three-lepton and Z requirements)
 - \Box Change three-lepton selection to \geq 4 leptons ($E_{\mathrm{T}}^{\mathrm{miss}}$ & Z the same)
 - $\hfill\square$ Change three-lepton selection to \geq leptons and require 2 Zs from leptons ($E_{\rm T}^{\rm miss}$ the same)

Future Studies — Higgsino Grid

Future Studies — Wino Grid

- \blacksquare 2011 total dataset \sim 5 fb^{-1}
- Next slide looks at exclusion potential for this expanded dataset
- Also look at alternative selection:
 - $\hfill\square$ Extend the $E_{\rm T}^{\rm miss}$ selection to $E_{\rm T}^{\rm miss}>$ 100 GeV (keep three-lepton and Z requirements)
 - $\hfill\square$ A \geq 4 lepton selection was found to reduce the wino grid event yields to nothing

Future Studies — Wino Grid

25 of 26

Conclusion

- I presented a supersymmetric search for events with large values of *E*^{miss}_T and three leptons, further requiring that two of the leptons form a same-flavor, opposite-sign pair with an invariant mass within 10 GeV of the *Z* mass
- 95 events observed in data and 72±12 were expected
- Upper limit of 23.8 fb was set at 95% confidence level on the visible cross section for processes beyond the standard model which result in this signature
- Interpetation of this upper limit was performed using two models from GGM supersymmetry; one model in which the NLSP is a Z-rich higgsino and another model featuring wino co-NLSPs
- These exclusion intervals confirm existing interpretations of prior searches at the ATLAS detector

Back-Up Slides

General Gauge Mediation (GGM)

Gauge Mediated Supersymmetry

Breaking (GMSB):

- SUSY is broken in a hidden sector, communicated to the MSSM sector by a messenger sector that couples to the gauge bosons
- Gauginos couple directly, generate $m_i = \frac{\alpha_i \Lambda}{4\pi}$
- Sfermions do not couple to messenger sector directly, require two loops giving mass-sqared contribution, $m^2 \propto (\alpha \Lambda)^2$
- For λ ~ O(100 TeV), sparticle masses are ~ O(1 TeV)
- Sfermions masses only depend on gauge quantum numbers \rightarrow degenerate
- Degeneracy prevents SUSY contribution to Flavor-Changing Neutral Currents, which depend on sfermion mass splittings
- LSP tends toward the gravitino in these models

General Gauge Mediation:

- Generic framework for GMSB models
- As $\alpha_i \rightarrow 0$, theory decouples to MSSM and hidden sector, messenger inbetween
- Information needed from hidden sector (due to strong coupling) are parameterized
- Modified mass relationship preserves scale and degeneracy, but doesn't force color-states to high mass
- LSP is the gravitino; makes the Next-to-LSP (NLSP) the interesting particle
- The MSSM's 105 parameters are reduced to:
 - \square m_1 , U(1) gaugino mass
 - m₂, SU(2) gaugino mass
 - m_ĝ, gluino mass
 - \square μ , SUSY Higgs mass parameter
 - \Box tan β , ratio of SUSY Higgs vacuum-expectation values
 - $\hfill\square\ensuremath{\mathsf{CT}_{NLSP}}\xspace$, characteristic NLSP decay range, determined by the scale of supersymmetry breaking

GGM Models

Wino co-NLSPs:

- $|m_2| \ll \mu, |m_2| < |m_1|$
- NLSP $\rightarrow \tilde{W}^0$ (wino)
- Charged wino, W[±], almost mass degenerate, effectively co-NLSPs
- $\blacksquare \quad \tilde{W}^0 \to Z\tilde{G}, \ \tilde{W}^0 \to \gamma\tilde{G} \ \text{and} \ \tilde{W}^\pm \to W^\pm\tilde{G}$
- Grid runs over 300 $< m_{\tilde{g}} <$ 1000 GeV and 120 $< m_{\tilde{W}} <$ 990 GeV
- 2 lepton filter applied; for $m_{ ilde W}=$ 120 GeV,
 - $Z \rightarrow \ell^+ \ell^-$ filter applied

Z-rich Higgsino NLSP:

- $|\mu| \ll |m_1|, |m_2|$
- NLSP $\rightarrow \tilde{h}$
- Branching ratios for $\tilde{\chi}_1^0 \rightarrow Z \tilde{G}$ prominent
- $M_1 = M_2 = 1 \text{ TeV, } \tan \beta = 1.5, \text{ and} c\tau_{NLSP} = 0.1 \text{ mm}$
- Grid runs over 300 $< m_{\tilde{g}} <$ 1000 GeV and 110 $< m_{\tilde{H}} <$ 990 GeV
- \blacksquare $Z \rightarrow \ell^+ \ell^-$ filter applied, 19% efficiency

The GGM grids were produced with PYTHIA 6.423 with mass spectra calculated using SUSPECT 2.41 and SDECAY 1.3 Next-to-Leading-Order (NLO) calculated using Prospino 2.1 $\,$

Next-to-Leading-Log (NLL) cross section for gg-production calculated using NLL_FAST

Object Selections

Electrons:

- electrons identified using shower shape, hadronic leakage, and ID hits ("medium" electrons)
- E_T >10 GeV
- $|n_{cl}| < 2.47$
- Electrons vetoed if pass through LAr dead cell
- $\blacksquare \quad \text{if } 1.37 < |n_{cl}| < 1.52, \, E_{\rm T} > 15 \, \, {\it GeV}$
- MC is resolution smeared to match data
- data energy scale is calibrated to match Z/J/ψ-candle measurements
- Signal Electrons: $\sum_{\Delta R < 0.2} E_T / E_{T^e} < 0.1$ and require tightened track & cluster criteria Muons:
- Require combination of ID track and MS track or
- ID track matching MS segments, calorimeter deposits
- *p*_T >10 GeV
- |η| < 2.4</p>
- Require 1 pixel hit, and 6 SCT hits
- MC resolution smeared to match data
- Signal Muons: $\sum_{\Delta R < 0.2} p_{\mathrm{T}}^{\mathrm{tracks}} < 1.8 \text{ GeV}$

Jets:

- Anti-k_T, ΔR 0.4, EMJES scale
- p_T >20 GeV
- |η| < 2.8</p>

Overlap Removal:

- If ∆R_{jet,electron} < 0.2, select electron</p>
- If △R_{jet,lepton} < 0.4, select jet</p>
- if $\Delta R_{muon, electron} < 0.1$, both muon & electron rejected

Drell-Yan:

Reject leptons with $M_{\ell^+\ell^-}$ < 20 GeV

Missing Transverse Momentum:

- Correction for electron-jet overlap applied; if cluster energy sum is 110% of electron energy, spills over to jets
- Check for: $|\vec{E}_T^{\mathrm{miss, jets}} + \sum_{jets} \vec{p}_T^{jet}| / E_T^{\mathrm{miss, e}} \le 1$
- Fix: $E_{x(y)}^{\text{miss,jets}} = -\frac{e}{h} \cdot E_{x(y)}^{\text{miss,e}} \sum_{jets} \vec{p}_T^{jet}$

27 of 26

Event Handling

Data Triggers:

- Triggers change as luminosity forced them to pre-scale
- \Box EF_e20_medium calorimeter seeded, $E_{\rm T} > 20 \ {\rm GeV}$
- $\Box \quad \mathsf{EF}_e22_medium calorimeter seeded, \\ E_T > 22 \; \mathsf{GeV}$
- □ EF_mu18 requires ID/MS muon p_T > 18 GeV
- □ EF_mu18_medium requires ID/MS muon p_T > 18 GeV Seeded by L1 MU11 trigger instead of L1 MU10

Seeded by L1 MU11 trigger instead of L1 MU10 (lower frequency)

Also require that a lepton be matched to the trigger object $\Delta R < 0.15$ and be in the plateau,

 p_{T} > 25 (20) GeV for electrons (muons)

MC is not triggered; instead each event is scaled by a trigger efficiency determined from the leptons in the event

MC corrections:

- Reconstruction efficiencies: events are scaled to correct the reconstruction efficiency in MC to that seen in data, based on the number, $E_{\rm T}/p_{\rm T}$, and η of the leptons
- *b*-tagging: events are scaled to match the MC

- Require the primary vertex has ≥5 tracks
- If an event has a jet that meets certain criteria associated with calorimeter energy spikes, noise, and non-collision backgrounds, the event is vetoed
- LAr-hole Veto: For 41.9% of the dataset, an electronic failure caused a dead region in the LAr calorimeter, $-0.1 < \eta < 1.5$ and $-0.9 < \phi < -0.5$; data events in this period are vetoed if an electron passes through, or if a jet is estimated to leave more than 40 GeV in the region; a proportionate amount of MC also receives this treatment
- Events showing excessive noise in LAr are vetoed
- Events with $|d_0^{PV}| \ge 0.2 \text{ mm or } |z_0^{PV}| \ge 1.0 \text{ mm}$ for a muon are vetoed (cosmics)

Events with badly measured muons, $\frac{\sigma_{q/p}}{|q/p|} \leq 0.2$, are vetoed

b-tagging efficiency to that seen in data

Pile-up: the MC was generated with a pile-up distribution different from data; MC events are re-weighted by the μ to match that seen in data

Pile-Up Re-weighting

Background Estimation

Irreducible: A SM contribution is considered "irreducible" if it produces three "real" leptons.

This includes diboson (*WZ*, *ZZ*) and $t\bar{t}V$ (for V = Z,W). The contribution of these backgrounds is estimated using MC

Reducible: A background is deemed "reducible" if it includes at least one "fake" electron or muon

A lepton produced in a semi-leptonic decay of a heavy-flavor quark or a photon conversion mis-identified as an electron The reducible background includes single-t, $t\bar{t}$ production, WW, and V produced with jets and photons A matrix method similar is used to estimate these backgrounds Except for internal conversions of photons mis-identified as a

signal muon, which makes use of a re-weighting technique

To measure the internal conversion to muons:

- \blacksquare All object selections and event cleaning is applied, as is the $E_{\rm T}^{\rm miss} > 50~{\rm GeV}$ selection
- Take ratio of trilepton events satisfying $m_Z m_{\ell^+\ell^-\ell^\pm} | < 10$ GeV over dilepton events with $m_Z m_{\ell^+\ell^-} | < 10$ GeV

This is then applied in the signal region to estimate the internal conversion faking muons rate, which gives a total of 0.7±0.1±0.7 events ^{27 of 26}

Matrix Method

We assume leading lepton is real (99% true)

$$\begin{pmatrix} N_{\text{SSS}} \\ N_{\text{SSS}} \\ N_{\text{SSS}} \\ N_{\text{SSS}} \\ N_{\text{SSS}} \end{pmatrix} = \begin{pmatrix} \epsilon_1 \epsilon_2 & \epsilon_1 f_2 & f_1 \epsilon_2 & f_1 f_2 \\ \epsilon_1 \epsilon_2^c & \epsilon_1 f_2^c & f_1 \epsilon_2^c & f_1 f_2^c \\ \epsilon_1^c \epsilon_2 & \epsilon_1^c f_2 & f_1^c \epsilon_2 & f_1^c f_2 \\ \epsilon_1^c \epsilon_2^c & \epsilon_1^c f_2^c & f_1^c \epsilon_2^c & f_1^c f_2^c \end{pmatrix} \cdot \begin{pmatrix} N_{RRR} \\ N_{RRF} \\ N_{RFR} \\ N_{RFF} \end{pmatrix}$$

- S is a signal lepton, S fails signal selection
- ϵ_i is the real identification efficiency, $\epsilon_i^c = 1 \epsilon_i$
- $f_i \text{ is the fake rate, } f_i^c = 1 f_i$

Invert matrix and use

 $N_{\mathrm{RRF}/\mathrm{RFR}/\mathrm{RFF} \rightarrow \mathrm{SSS}} = \epsilon_1 f_2 \cdot N_{\mathrm{RRF}} + f_1 \epsilon_2 \cdot N_{\mathrm{RFR}} + f_1 f_2 \cdot N_{\mathrm{RFF}}$ to estimate the reducible background

 ϵ_i is measured using tag-and-probe on the Z-candle

 f_i is measured in MC and scaled to data based on low- E_T^{miss} control region, and depends on whether the lepton comes from heavy flavor or a photon conversion, and from top versus Z backgrounds, and the relative contribution of each background

The background estimation is tested in two control regions, 1) a low- E_{T}^{miss} region with 30 < E_{T}^{miss} < 50 GeV and 2) a high- E_{T}^{miss} control region with E_{T}^{miss} > 50 GeV and a veto on same-flavor, opposite-charge pairs:

Control Region	tŦV	ZZ	WZ	Reducible Background	Total Background	Data
Low- $E_{\rm T}^{\rm miss}$	$1.4{\pm}0.6$	6.7±1.8	61.2±15.0	55.9±35.2	125.2 ± 38.3	122
high- $E_{\mathrm{T}}^{\mathrm{miss}}$	$0.7 {\pm} 0.6$	$0.03 {\pm} 0.04$	0.4±0.2	13.5±8.7	14.7 ± 8.7	12

27 of 26

Systematics

On MC:

	tīV	ZZ	WZ	Total
Nominal	2.7	3.4	58.4	64.5
Statistical	±0.1	±0.4	±2.7	±2.7
JES	±0.1	±0.2	±0.2	±0.3
JER	±0.1	±0.0	±0.5	± 0.5
EES	±0.0	±0.0	±0.8	±0.8
EER	±0.0	±0.0	±0.1	±0.1
MID	±0.1	±0.0	±1.1	± 1.1
MMS	±0.1	±0.0	±1.3	±1.3
ESF	±0.1	±0.1	±2.0	±2.0
MSF	±0.0	±0.0	±0.5	± 0.5
Trigger	±0.0	±0.0	±0.2	±0.2
Btag	±0.0	±0.0	±0.0	±0.0
Pileup	±0.0	±0.1	±0.2	±0.2
LArhole	±0.0	±0.1	±0.0	±0.1
PDF	- 1	±0.6	±8.9	±9.0
Cross Section	±2.1	±0.2	± 4.1	± 4.6
TOTAL	±2.1	±0.8	±10.5	±11.0

On reducible backgrounds:

■ Fake rate — are measured in both low- and high-E^{miss}_T regions, but the low-E^{miss}_T region is used (higher statistics); the difference is used as a systematic and gives 0.4-35%, but is as high as 82% for heavy flavor electrons from V + jets

Fake-rate scale factors — estimated by varying the Z-mass window (30-50%); for heavy flavor also take difference between $p_{\rm T}$ fit and any variation in η (10%); a 10% systematic due to differences in MC shower shapes is also added

Process fraction — The actual contribution due to each background is unknown, so the fake rates are varied by the same systematics as the irreducible backgrounds and give an estimate of 50% in low- E_{T}^{miss} region and 50-200% in high- E_{T}^{miss} region.

Signal Systematics:

- Use MSTW2008NLO for PDF and scale uncertainties and CTEQ6.6M for scale, PDF, and α_S uncertainties
- Set envelope $\sigma_{max} = \max(\text{CTEQ}, \text{MSTW})$ and $\sigma_{min} = \min(\text{CTEQ}, \text{MSTW})$

$$\sigma_{\rm NLO} = \frac{1}{2} \cdot (\sigma_{\rm max} + \sigma_{\rm min}) \pm \frac{1}{2} \cdot (\sigma_{\rm max} - \sigma_{\rm min})$$

- Higgsino grid the mean uncertainty is 10% with some regions of the parameter space having an uncertainty as high as 35%
- Wino grid the mean uncertainty is 15% with some regions reaching as high as 44%
- The table of systematics is also applied to signal MC

27 of 26

Statistical Interpretation

Statistical Interpretation

Results interpreted using modified-frequentist approach

- Confidence level of the signal+background hypothesis is normalized to the background-only hypothesis, $CL_s = CL_{s+b}/CL_b$
- Test statistic constructed using:
- Log Likelihood function

 $L(n,\theta^{0}|\mu,b,\theta) = P(n|\lambda_{S}(\mu,b,\theta)) \cdot P_{Syst}(\theta^{0},\theta)$

- \square *n* is the number of events observed in data,
- \Box μ is the predicted SUSY signal strength for each test, normalized to unity,
- b is the estimate of the background contribution,
- $\Box \quad \theta \text{ represents the systematic uncertainties in the form of nuisance parameters,}$
- $\Box \quad \theta^0 \text{ represents the nominal values about which } \theta \\ \text{ is varied.}$
- $\square P(n|\lambda_S(\mu, b, \theta)) \text{ is a Poisson distribution}$ describing the probability of observing*n*given $an expectation generated by <math>\lambda_S(\mu, b, \theta)$ based

on the signal estimate, the background estimate, and systematic uncertainties. $P_{Syst}(\theta^0, \theta)$ is a probability density function composed of the product of unit normal distributions, $G(\theta^0 - \theta)$, for each of the systematic uncertainties accounted for.

Profile LLR:

$$\Lambda(\mu) \equiv \Lambda(\mu, n, \theta^{0}) \equiv -2 \ln \left(\frac{L(n, \theta^{0} | \mu, \hat{\hat{b}}, \hat{\hat{\theta}})}{L(n, \theta^{0} | \hat{\mu}, \hat{\hat{b}}, \hat{\hat{\theta}})} \right)$$

- maximum of the likelihood occurs at $\hat{\mu}$, \hat{b} , $\hat{\theta}$
- For a fixed signal strength, μ, the maximum likelihood is given by β̂ and β̂
- Pseudo-experiments are used to calculate p-values
- L(n, $\theta^0 | \mu, b, \theta$) is used to make pseudo-measurements to obtain new values of n and θ^0 , and then calculate a new value of $\Lambda(\mu)$, called q
- Then integrate over all q' < q_{nominal} to get p-values for signal hypothesis and SM hypothesis
- For signal, p-values < 0.05 are excluded</p>

	e ⁺ e ⁻ e [±]												
Run #	Event #	Flavor	p_T^{ℓ} [GeV]	m _T [GeV]	m _{1+,1-1} [GeV]	$m_{l+,l-1,l'\pm}$ [GeV]	Njets	Jet p_T [GeV]	m _{eff} [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$\delta E_{\rm T}^{\rm miss}$ (%)		
180164	98593931	e^e+e+	71.7, 54.0, 33.4	132.0, 77.3, 56.6	203.3, 86.8	247.0	0		222.0	60.8	1.9		
180225	38923591	e+e-e-	37.3, 36.1, 15.8	89.5, 1.1, 63.7	89.2, 37.8	108.1	1	56.9	152.1	64.3	9.5		
180309	14077706	e ⁻ e ⁺ e ⁻	46.7, 29.1, 16.1	26.2, 89.3, 69.9	102.6, 89.6	150.7	2	46.4, 39.7	175.8	83.9	12.6		
182787	56439353	e ⁺ e ⁻ e ⁻	94.8, 22.0, 11.2	129.6, 13.3, 64.8	90.7, 55.5	113.3	1	109.7	223.3	96.4	7.8		
183003	5466177	e ⁺ e ⁻ e ⁻	84.7, 27.3, 19.6	64.0, 19.9, 75.2	32.5, 91.9	108.6	1	162.5	206.4	74.6	16.8		
183003	61556406	e ⁻ e ⁺ e ⁻	51.5, 44.9, 12.4	52.9, 70.9, 52.6	95.0, 51.0	121.7	2	47.6, 23.4	166.3	57.5	14.8		
183129	16288174	e ⁻ e ⁺ e ⁻	80.6, 21.1, 13.2	196.4, 63.6, 80.1	96.9, 23.7	107.5	1	44.8	239.9	124.9	4.9		
183426	10151435	$e^-e^+e^+$	63.2, 31.7, 25.6	109.5, 67.7, 78.2	87.1, 65.8	122.9	0		182.9	61.7	0.8		
184022	21785917	$e^-e^+e^+$	56.7, 56.4, 12.6	56.0, 7.0, 50.9	86.7, 58.4	116.8	3	71.6, 47.1, 39.1	177.7	52.6	24.3		
184022	128414499	$e^-e^+e^+$	89.7, 22.3, 20.7	146.4, 59.2, 13.0	89.5, 84.6	128.5	1	37.6	204.5	71.5	4.3		
185644	25257494	e ⁺ e ⁻ e ⁻	139.9, 124.8, 14.7	118.4, 36.7, 92.2	85.6, 101.3	163.0	2	236.1, 125.6	426.0	146.7	14.4		
186049	1958828	e ⁺ e ⁻ e ⁻	52.2, 43.9, 43.7	103.5, 87.6, 35.4	159.6, 89.2	264.2	0		193.2	51.3	7.0		
186729	243498369	e ⁻ e ⁻ e ⁺	48.9, 34.5, 29.5	133.7, 67.0, 34.7	91.2, 112.1	352.9	4	59.2, 41.1, 29.8, 25.8	215.6	102.6	8.4		
186753	3683826	e ⁺ e ⁻ e ⁻	110.4, 62.0, 41.9	73.8, 65.0, 94.6	201.1, 87.4	248.3	2	139.6, 35.0	287.4	72.4	12.4		
187219	31582796	$e^-e^+e^+$	41.1, 28.0, 27.9	89.2, 64.9, 83.5	85.7, 65.8	111.6	2	42.7, 33.2	162.0	65.1	3.1		
187811	62120095	e ⁻ e ⁺ e ⁻	71.7, 34.6, 29.0	33.4, 62.7, 95.3	256.3, 91.3	290.3	2	107.5, 54.7	236.3	101.0	9.0		
186965	28815719	e ⁺ e ⁻ e ⁻	131.0, 42.2, 21.5	257.4, 48.6, 102.4	161.9, 96.3	196.0	0		322.9	128.3	3.5		
186965	120508399	$e^+e^+e^-$	83.9, 18.5, 15.5	161.9, 92.4, 6.2	88.1, 33.8	120.2	2	80.3, 31.4	242.1	124.2	6.3		
186965	155446128	$e^-e^-e^+$	45.9, 38.0, 36.2	61.8, 89.6, 25.4	84.4, 82.8	126.8	3	154.2, 41.5, 20.4	181.8	62.1	2.5		

Backup — $e^+e^-\mu^\pm$

	$e^+e^-\mu^\pm$												
Run #	Event #	Flavor	p_T^{ℓ} [GeV]	m _T [GeV]	$m_{l^+,l^{-1}}$ [GeV]	$m_{l^+,l^{-1},l'^{\pm}}$ [GeV]	Njets	Jet p_T [GeV]	m _{eff} [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$\delta E_{\rm T}^{\rm miss}$ (%)		
182456	55533226	$e^{-}e^{+}\mu^{+}$	96.7, 30.4, 18.3	184.8, 103.0, 85.4	85.1	172.0	1	41.4	249.2	102.7	1.6		
182486	16677615	e^e^+	107.2, 39.7, 38.8	200.6, 38.9, 104.6	88.2	171.7	0		279.8	94.1	6.1		
182486	21528951	$e^-\mu^-e^+$	120.8, 17.4, 16.1	202.1, 58.9, 14.2	90.0	113.4	0		239.2	84.6	3.7		
182879	19439981	$e^{-}e^{+}\mu^{-}$	52.3, 50.1, 19.0	89.1, 90.0, 52.8	89.8	113.6	0		172.0	50.7	5.1		
183021	69425573	$e^-e^+\mu^+$	50.3, 28.6, 26.5	97.2, 43.3, 72.5	90.8	179.7	0		155.6	50.2	3.2		
183286	97150217	$e^{-}\mu^{+}e^{+}$	66.5, 39.6, 15.5	40.3, 64.8, 49.0	89.2	139.3	2	124.2, 21.6	189.1	68.2	11.4		
183780	108727692	$e^-\mu^-e^+$	89.7, 38.5, 23.4	129.0, 46.7, 45.2	86.9	154.7	0		204.2	52.7	3.0		
186169	16345995	$e^{-}e^{+}\mu^{-}$	41.5, 27.2, 11.4	18.9, 74.4, 26.9	82.3	95.0	1	20.3	131.1	51.0	10.5		
186216	27680559	$e^-\mu^-e^+$	58.8, 45.5, 22.4	110.4, 95.5, 27.8	90.0	208.6	0		187.0	60.8	2.8		
185761	18433702	$e^{+}\mu^{-}e^{-}$	67.0, 20.3, 11.8	129.4, 71.1, 6.4	90.7	105.2	0		162.3	63.2	4.5		
185998	4354615	$e^+e^-\mu^+$	83.7, 38.9, 34.2	149.5, 101.9, 1.5	94.3	294.0	2	21.1, 20.6	225.8	66.8	4.3		
186729	81190803	$e^{-}e^{+}\mu^{+}$	213.4, 105.5, 35.5	359.0, 254.2, 10.1	91.5	329.5	2	73.9, 64.6	508.8	154.0	4.7		
186729	159856729	$e^-\mu^+e^+$	98.0, 19.9, 18.4	145.3, 48.8, 43.5	88.4	108.9	2	39.0, 27.9	195.6	59.3	5.0		
186877	21782291	$\mu^-e^+e^-$	51.0, 37.2, 33.0	103.5, 84.8, 30.9	92.4	154.5	4	116.7, 41.4, 22.2, 20.3	174.8	53.4	11.6		
186923	59240008	$e^+\mu^-e^-$	110.3, 46.6, 29.6	177.4, 111.6, 34.7	86.4	173.9	1	49.2	271.5	85.2	3.0		

	$\mu^{+}\mu^{-}e^{\pm}$											
Run #	Event #	Flavor	p_T^{ℓ} [GeV]	m_T [GeV]	m1+,1-1 [GeV]	$m_{l^{\pm},l^{-1},l'^{\pm}}$ [GeV]	Njets	Jet p_T [GeV]	m _{eff} [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$\delta E_{\rm T}^{\rm miss}$ (%)	
180448	1483181	$\mu^-e^-\mu^+$	46.8, 43.0, 39.6	111.5, 65.6, 70.0	91.1	147.7	5	80.1, 55.9, 46.8, 37.8, 27.4	209.8	80.4	5.8	
180139	47529321	$\mu^{+}\mu^{-}e^{+}$	91.6, 30.8, 15.7	151.6, 69.4, 14.7	85.8	119.8	0		203.8	65.7	4.3	
180400	1649049	$\mu^{+}e^{+}\mu^{-}$	112.7, 103.6, 67.0	202.9, 55.7, 159.2	93.0	305.6	0		378.1	94.6	1.4	
182787	18945920	$\mu^{+}\mu^{-}e^{-}$	46.0, 43.1, 29.6	74.1, 91.8, 65.1	93.2	135.7	0		173.4	54.7	2.6	
182787	117824417	$\mu^{-}e^{-}\mu^{+}$	122.1, 37.1, 35.0	223.0, 21.3, 102.9	95.9	192.0	0		297.3	103.2	0.4	
183054	25255214	$e^{-}\mu^{+}\mu^{-}$	128.6, 104.6, 83.4	12.3, 189.1, 167.5	82.3	358.6	2	52.8, 20.6	403.4	86.9	2.9	
183081	160821752	$\mu^{+}e^{-}\mu^{-}$	179.2, 128.6, 24.7	256.1, 73.6, 96.7	97.6	397.5	0		427.0	94.7	2.5	
183407	36412879	$\mu^+\mu^-e^-$	59.0, 36.2, 31.0	110.4, 50.1, 59.5	88.1	135.4	0		178.4	52.1	1.3	
183462	137952124	$\mu^-e^-\mu^+$	87.6, 35.5, 31.3	155.8, 78.5, 39.8	91.6	141.7	0		224.2	69.8	1.1	
183462	149168776	$\mu^+\mu^-e^-$	52.8, 32.9, 26.0	106.4, 46.8, 75.6	90.9	132.7	0		166.9	55.2	2.2	
184130	43351005	$\mu^+\mu^-e^+$	65.7, 28.8, 27.3	113.4, 72.1, 28.8	92.8	158.8	0		176.4	55.5	2.2	
183780	40559312	$\mu^+\mu^-e^-$	50.3, 45.5, 33.2	92.9, 83.2, 82.1	90.6	166.4	1	31.0	182.6	53.3	6.9	
184169	35750750	$e^{+}\mu^{+}\mu^{-}$	87.8, 77.5, 67.0	141.3, 196.7, 156.5	90.9	335.7	1	21.5	357.7	125.3	1.9	
184169	105464632	$\mu^{-}\mu^{+}e^{-}$	54.3, 33.9, 33.7	62.1, 91.0, 92.1	92.1	159.6	3	39.4, 28.8, 21.0	185.3	63.4	6.4	
184130	44517484	$\mu^{+}e^{-}\mu^{-}$	59.6, 24.9, 20.9	21.2, 9.2, 65.7	99.1	152.3	1	138.2	157.5	52.5	16.1	
183780	49478936	$\mu^{+}\mu^{-}e^{-}$	66.2, 25.8, 23.9	130.7, 0.6, 76.1	87.2	109.4	0		180.7	64.7	1.2	
183780	62734339	$\mu^{+}e^{+}\mu^{-}$	81.5, 24.5, 14.9	152.1, 75.6, 70.1	94.1	127.8	2	74.9, 22.0	204.9	84.1	1.5	
184072	10617609	$e^{+}\mu^{+}\mu^{-}$	23.1, 20.1, 20.0	75.6, 89.1, 43.2	86.5	117.7	1	91.0	177.1	113.9	6.4	
186182	7407118	$\mu^- e^+ \mu^+$	140.6, 30.3, 17.5	258.0, 42.1, 14.1	99.1	280.1	0		308.9	120.5	3.3	
186169	17499798	$\mu^-\mu^+e^-$	53.4, 35.8, 30.1	47.2, 79.0, 77.6	88.8	136.0	2	44.0, 21.9	171.0	51.8	4.9	
186169	60145885	$\mu^+\mu^-e^+$	72.8, 46.2, 31.9	157.5, 96.9, 92.4	89.3	184.9	0		238.7	87.8	1.1	
186361	18855850	$\mu^+e^-\mu^-$	346.4, 45.9, 36.8	380.9, 65.7, 120.6	94.1	305.0	1	248.2	534.7	105.9	11.8	
186721	30840259	$e^{+}\mu^{-}\mu^{+}$	128.1, 108.1, 60.0	88.7, 213.1, 173.4	91.0	304.8	2	25.3, 23.0	421.3	125.3	7.3	
186669	42109584	$\mu^{-}\mu^{+}e^{-}$	54.6, 48.3, 13.7	83.1, 100.5, 53.2	94.4	124.7	0		176.4	59.7	3.9	
186934	75059135	$\mu^{-}e^{-}\mu^{+}$	66.2, 40.7, 22.7	111.2, 54.4, 66.3	87.3	153.3	0		185.3	55.7	2.2	
187763	61044675	$\mu^+ e^+ \mu^-$	128.4, 30.3, 23.2	232.9, 48.6, 59.3	91.5	155.5	0		287.2	105.7	0.5	
187811	15210356	$\mu^{+}\mu^{-}e^{-}$	72.2, 45.7, 32.6	139.7, 133.7, 14.7	87.5	142.7	1	74.1	253.0	102.5	3.9	
186877	126711223	$\mu^-e^-\mu^+$	95.4, 75.9, 30.6	59.2, 86.8, 139.5	100.0	135.9	3	251.5, 26.8, 24.0	365.3	163.4	9.6	
186923	10398981	$e^-\mu^-\mu^+$	36.0, 28.8, 18.6	89.7, 39.0, 43.0	89.9	233.7	2	94.4, 20.6	167.3	84.0	8.8	
187219	43654572	$\mu^-\mu^+e^-$	46.5, 33.6, 14.8	67.3, 67.8, 52.3	91.1	110.9	3	22.1, 21.5, 21.0	145.9	51.0	9.1	

Backup — $\mu^+\mu^-\mu^\pm$

	$\mu^+\mu^-\mu^\pm$											
Run #	Event #	Flavor	$p_{\rm T}^{\ell}$ [GeV]	m_T [GeV]	$m_{l^+,l^{-1}}$ [GeV]	$m_{l^+,l^{-1},l'^{\pm}}$ [GeV]	Njets	Jet p_T [GeV]	$m_{\rm eff}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$\delta E_{\rm T}^{\rm miss}$ (%)	
179739	23068430	$\mu^{+}\mu^{+}\mu^{-}$	73.0, 44.8, 30.6	112.4, 85.6, 36.1	95.0, 41.5	141.3	1	30.0	202.5	54.0	4.6	
180124	68526315	$\mu^{+}\mu^{+}\mu^{-}$	62.7, 43.0, 34.5	90.2, 92.3, 54.0	93.7, 73.2	154.7	0		192.0	51.7	1.1	
180164	73825441	$\mu^{-}\mu^{+}\mu^{+}$	67.0, 24.6, 13.2	117.2, 7.7, 41.6	90.7, 78.1	124.7	1	20.9	156.7	51.8	6.6	
180309	31818991	$\mu^+\mu^-\mu^-$	52.6, 33.8, 27.7	80.3, 36.5, 71.9	81.4, 85.7	123.4	1	73.1	182.2	68.1	7.8	
182454	4702311	$\mu^{+}\mu^{-}\mu^{-}$	109.2, 100.5, 53.8	128.5, 88.4, 2.8	57.6, 91.1	131.0	1	315.3	377.3	113.8	12.3	
182456	37283247	$\mu^-\mu^+\mu^-$	86.4, 76.2, 30.1	129.3, 130.0, 61.5	88.6, 65.5	120.6	1	145.6	248.2	55.5	13.9	
182796	41972295	$\mu^{+}\mu^{+}\mu^{-}$	94.4, 70.9, 34.4	101.5, 66.8, 66.8	113.9, 94.3	248.3	2	67.1, 21.6	251.7	51.9	11.8	
183054	21026988	$\mu^{+}\mu^{-}\mu^{+}$	62.4, 36.8, 36.8	137.6, 119.2, 51.0	90.2, 78.1	155.3	1	159.1	271.3	135.4	5.6	
183286	53451031	$\mu^{+}\mu^{+}\mu^{-}$	83.5, 29.5, 19.9	115.7, 64.0, 24.4	83.7, 73.7	233.5	1	22.8	183.5	50.5	5.5	
183412	2242543	$\mu^{-}\mu^{+}\mu^{-}$	163.8, 29.2, 19.5	251.7, 69.3, 40.2	101.9, 86.7	234.7	1	56.0	309.2	96.8	3.8	
182747	112682971	$\mu^{+}\mu^{-}\mu^{-}$	60.1, 53.6, 29.2	111.9, 106.5, 14.5	84.3, 83.6	153.4	1	28.5	195.8	52.9	5.8	
182787	34276063	$\mu^{-}\mu^{+}\mu^{-}$	55.0, 41.9, 14.9	158.9, 27.7, 69.1	90.9, 50.7	113.6	1	111.8	234.8	123.0	4.7	
182787	103600363	$\mu^{-}\mu^{+}\mu^{+}$	104.2, 31.7, 29.7	7.8, 6.2, 97.3	88.4, 93.5	139.2	4	116.1, 110.6, 34.5, 22.0	299.1	133.5	12.3	
184130	35410477	$\mu^{+}\mu^{+}\mu^{-}$	40.4, 25.6, 11.1	106.0, 55.9, 56.4	53.2, 98.6	134.8	1	22.4	150.0	73.0	3.7	
184022	43591184	$\mu^{-}\mu^{+}\mu^{+}$	45.0, 18.7, 13.7	115.8, 65.1, 61.5	91.9, 58.5	109.4	0		151.9	74.6	2.1	
186049	70818458	$\mu^-\mu^+\mu^-$	94.8, 80.3, 21.3	157.9, 105.2, 65.7	82.3, 100.8	164.1	3	48.0, 30.4, 25.2	269.8	73.4	0.8	
186179	5228295	$\mu^{-}\mu^{+}\mu^{-}$	79.2, 41.1, 32.7	119.8, 35.6, 95.4	93.1, 51.7	141.6	4	441.4, 193.0, 58.4, 25.5	245.6	92.6	8.2	
186169	47351357	$\mu^{-}\mu^{+}\mu^{-}$	56.3, 32.8, 32.3	101.2, 40.6, 83.8	90.5, 89.1	141.4	0		175.7	54.4	0.6	
186216	11067182	$\mu^{-}\mu^{+}\mu^{-}$	57.4, 31.7, 31.2	101.4, 68.6, 79.8	89.1, 27.2	137.9	0		185.2	64.9	5.8	
186729	54074612	$\mu^{-}\mu^{+}\mu^{+}$	58.8, 36.4, 11.8	131.5, 85.2, 59.1	90.5, 42.5	124.9	0		186.8	79.8	2.7	
186729	175034387	$\mu^{-}\mu^{+}\mu^{-}$	61.4, 43.8, 15.6	94.8, 120.8, 24.8	91.9, 53.7	131.6	1	69.6	205.3	84.6	4.3	
186923	146860679	$\mu^{-}\mu^{+}\mu^{+}$	77.4, 37.5, 20.9	128.2, 73.2, 3.1	110.2, 92.6	150.1	0		193.5	57.7	1.5	
186965	15778260	$\mu^{-}\mu^{+}\mu^{+}$	63.3, 57.8, 28.4	99.1, 134.1, 69.3	92.2, 102.7	169.9	1	31.4	227.4	77.9	2.1	
186965	63620161	$\mu^{-}\mu^{+}\mu^{-}$	45.5, 41.1, 35.6	56.2, 81.6, 85.4	91.4, 40.7	128.8	0		173.5	51.2	2.6	
186965	155056482	$\mu^{-}\mu^{-}\mu^{+}$	100.3, 40.6, 14.5	56.7, 90.0, 53.4	92.2, 41.0	322.5	1	92.2	205.6	50.2	7.6	
186965	180209937	$\mu^{+}\mu^{-}\mu^{-}$	141.2, 46.1, 18.1	112.6, 97.4, 59.7	280.6, 88.7	297.0	4	56.4, 53.0, 25.3, 23.8	257.0	51.5	3.8	
187219	68267656	$\mu^{-}\mu^{-}\mu^{+}$	347.8, 77.3, 36.0	607.8, 23.3, 149.2	95.8, 102.2	423.8	1	286.7	758.3	297.2	1.9	
187811	67845541	$\mu^{-}\mu^{+}\mu^{-}$	71.9, 37.6, 37.3	135.4, 91.5, 52.4	88.7, 77.0	182.4	1	23.3	211.5	64.6	2.3	
187811	68065554	$\mu^{-}\mu^{+}\mu^{-}$	50.7, 27.6, 17.0	107.2, 38.0, 61.2	87.3, 60.6	170.5	0		152.7	57.4	2.4	
187812	11122323	$\mu^{-}\mu^{+}\mu^{-}$	70.9, 59.6, 40.1	107.7, 113.6, 44.1	93.7, 92.2	176.9	0		227.9	57.3	0.9	
187763	79698027	$\mu^{-}\mu^{+}\mu^{+}$	73.0, 52.2, 46.9	151.7, 135.9, 70.9	95.5, 168.2	290.2	0		263.0	90.9	1.6	

Figure: Event display for Event 1649049 from run 180400. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having two leading muons with $p_{\rm T} > 100$ GeV, 112.7 GeV and 103.6 GeV.

Figure: Event display for Event 4702311 from run 182454. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having muons with $p_{\rm T} = 109.2$ GeV and 100.5 GeV and a jet with $p_{\rm T} = 315.3$ GeV, as well as $E_{\rm T}^{\rm miss} = 113.8$ GeV.

Figure: Event display for Event 16677615 from run 182486. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for a $p_{\rm T} = 107.2$ GeV lead-electron and a high transverse mass, $m_{\rm T} = 200.6$ GeV.

Figure: Event display for Event 21528951 from run 182486. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for a high- $p_{\rm T}$ lead-electron, $p_{\rm T} = 120.8$ GeV, and a high transverse mass, $m_{\rm T} = 202.1$ GeV.

Figure: Event display for Event 103600363 from run 182787. The indices are indicative of lepton $p_{\rm T}$ order. Notable features of this event are the $p_{\rm T} = 104.2$ GeV muon, as well as the large $E_{\rm T}^{\rm miss}$ value of 133.5 GeV. This event also has a relatively high jet multiplicity, with four jets.

Figure: Event display for Event 117824417 from run 182787. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for the $p_{\rm T} = 122.1 \ {\rm GeV}$ muon and $E_{\rm T}^{\rm miss} = 103.2 \ {\rm GeV}$.

Figure: Event display for Event 25255214 from run 183054. The indices are indicative of lepton $p_{\rm T}$ order. The $p_{\rm T} = 128.6$ GeV electron and $p_{\rm T} = 104.6$ GeV muon make this event notable. Additionally, it has a trilepton invariant mass of 358.6 GeV.

Figure: Event display for Event 160821752 from run 183081. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for featuring a $p_{\rm T} = 179.2$ GeV muon, a $p_{\rm T} = 128.6$ GeV electron, and a trilepton mass of 397.5 GeV.

Figure: Event display for Event 16288174 from run 183129. The indices are indicative of lepton $p_{\rm T}$ order. This event has 124.9 GeV of $E_{\rm T}^{\rm miss}$.

Figure: Event display for Event 2242543 from run 183412. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for its $p_{\rm T} = 163.8~{\rm GeV}$ lead muon.

Figure: Event display for Event 35750750 from run 184169. The indices are indicative of lepton $p_{\rm T}$ order. The $E_{\rm T}^{\rm miss}=125.3~{\rm GeV}$ makes this event remarkable.

Figure: Event display for Event 25257494 from run 185644. The indices are indicative of lepton $p_{\rm T}$ order. This event has a sizable amount of $E_{\rm T}^{\rm miss}$, 146.7 GeV, and leading electrons with $p_{\rm T} = 139.9$ and 124.8 GeV.

Figure: Event display for Event 5228295 from run 186179. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having a jet with $p_{\rm T} = 441.4$ GeV, on top of a relatively large jet multiplicity.

Figure: Event display for Event 7407118 from run 186182. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having a $p_{\rm T} = 140.6$ GeV muon and a trilepton mass of 280.1 GeV.

Figure: Event display for Event 18855850 from run 186361. The indices are indicative of lepton $p_{\rm T}$ order. This event is remarkable by virtue of including a $p_{\rm T} = 346.4$ Gev muon and having a trilepton mass of 305.0 GeV.

Figure: Event display for Event 30840259 from run 186721. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having a $p_{\rm T} = 128.1$ GeV electron and a $p_{\rm T} = 108.1$ GeV muon. It also has a 304.8 GeV trileptonic mass and 125.3 GeV of $E_{\rm T}^{\rm miss}$.

Figure: Event display for Event 81190803 from run 186729. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for its $p_{\rm T} = 213.4$ GeV lead electron and $E_{\rm T}^{\rm miss} = 154.0$ GeV. It also has $m_{\ell^+\ell^-,\ell'^\pm} = 329.5$ GeV.

Figure: Event display for Event 243498369 from run 186729. The indices are indicative of lepton $p_{\rm T}$ order. This event features a large trilepton mass, $m_{\ell^+\ell^-,\ell'^\pm} = 352.9$ GeV and large $E_{\rm T}^{\rm miss}$, 102.6 GeV.

Figure: Event display for Event 126711223 from run 186877. The indices are indicative of lepton $p_{\rm T}$ order. This event has a jet with $p_{\rm T} = 251.5$ GeV and $E_{\rm T}^{\rm miss} = 163.4$ GeV.

Figure: Event display for Event 120508399 from run 186965. The indices are indicative of lepton $p_{\rm T}$ order. This event contains 124.2 GeV of $E_{\rm T}^{\rm miss}$.

Figure: Event display for Event 180209937 from run 186965. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having a $p_{\rm T} = 141.2$ GeV muon and $m_{\ell^+\ell^-,\ell'^\pm} = 297.0$ GeV.

Figure: Event display for Event 28815719 from run 186965. The indices are indicative of lepton $p_{\rm T}$ order. This is another event with a large amount of $E_{\rm T}^{\rm miss}$, $E_{\rm T}^{\rm miss} = 128.3$ GeV and an electron with $p_{\rm T} = 131.0$ GeV.

Figure: Event display for Event 68267656 from run 187219. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having a $p_{\rm T}=347.8~{\rm GeV}$ muon, as well as a $p_{\rm T}=286.7~{\rm GeV}$ jet and $E_{\rm T}^{\rm miss}=297.2~{\rm GeV}$. The trilepton mass is 423.8 GeV. This event has been super-sized.

Figure: Event display for Event 61044675 from run 187763. The indices are indicative of lepton $p_{\rm T}$ order. This event is notable for having a $p_{\rm T} = 128.4$ GeV muon.