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e Center-Of-Mass Energy of 14 TeV
e Operates at ~ 40 MHz, so crossings happen every 25 ns
e Luminosity planned to ramp up in stages:

Stage 1: (Pilot Run) peak 1.2 - 103! em 2571,
2.3 pb~! total [2]

Stage 2: ~2-1032 em=2s~ ! for ~ 4-10% —~ 800pb—*

Stage 3: ~ 11033 em=2s~ ! for ~ 6-10%s —~ 6fb!
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e Center-Of-Mass Energy of 14 TeV
e Operates at ~ 40 MHz, so crossings happen every 25 ns
e Luminosity planned to ramp up in stages:

Stage 1: (Pilot Run) peak 1.2 - 103! em 2571,
2.3 pb~! total [2]

Stage 2: ~2-1032 em=2s~ ! for ~ 4-10% —~ 800pb—*
Stage 3: ~ 11033 em=2s~ ! for ~ 6-10%s —~ 6fb!

Stage 4: ~ 1-10%* em 257! for ~ 107s —~ 1000~ [3, 4]

3/35



pparatu

|—_/im’_%

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

[J ATLAS

Spectrometer
0 Magnet System

Supersymmetry

Simulation

Analysis

The Future

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

BRI @K

Physics & Astronomy Department [ 1-| 4 /35



U Inner Detector

[0 Calorimeters

U Muon
Spectrometer

0 Magnet System

Supersymmetry

Simulation

Analysis

The Future

BRI @K

Physics & Astronomy Department

Detector

"lﬂlﬁﬂﬂf i

| ||"|"

I \4 wr U _

[1]

The inner tracker is responsible for tracking and
IS composed of 3 tracking devices:
e The Pixel Tracker
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er Detector

e 1744

16.4 x 60.8mm
odules

¥ e« Each module

" has 46,080

40 x 400um pixels
e Over 80 million
channels of data

e 14m Resolution
[5, 6, 7]

[1]

The inner tracker is responsible for tracking and
IS composed of 3 tracking devices:
e The Pixel Tracker
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The inner tracker is responsible for tracking and
IS composed of 3 tracking devices:

e The Semi-Conductor Tracker
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The inner tracker is responsible for tracking and
IS composed of 3 tracking devices:
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Inner Detector

The inner tracker is responsible for tracking and
IS composed of 3 tracking devices:

e The Transition-Radiation Tracker

e 4mm proportion

_ tube “straws” with

30um wires.

e 70% Xe, 27%
CO3, 3% O9

e Straws packed

in polypropylene
to produce
transition radiation.
e 52,544 2-channel
150 cm straws

In barrel

e 159,744 39cm

or 51cm straws

per endcap
e 135um resolution
[9, 10, 11]
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The liquid argon calorimeter is composed of two type of
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Liquid Argon Calorimeter:

e Used for EM calorimetry and Hadron endcaps
— Lead absorbers for EM calorimetry

— Copper absorbers for hadron endcaps

e Argon chosen for stability in high

radiation environment.

e Accordion geometry chosen for good
azimuthal coverage and minimization of gaps.

e Energy resolution:

oK

b
E %@E@C

a ~8-11%, b ~ O(400MeV), ¢ <0.7% [10, 12]

[1]
The liquid argon calorimeter is composed of two type of
calorimeters:

Liquid Argon Calorimeter
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Scintillating Tile Calorimeter:

e Lead absorbers sandwiching scintillating tiles
e Used farther from interaction point,

less stable in high-radiation and less expensive
e Energy resolution:

= ®.03 [n<3
%:ﬁ@.l, 3| <5
[10, 13]

[1]

The liquid argon calorimeter is composed of two type of
calorimeters:

Scintillating Tile Calorimeter
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Simulation
AL Resistive Plate Chambers: — | -
i |l ® gaseous parallel-plate detectors N -_re - vohage
® Bakelite plates with insulating spacers \\ ¢ s
® 97% CoHo Fy, 3% iso-C'y Hig gas mixture b L l
® Part of muon triggering system L_T
® |nexpensive e
® 1.515 x lem time-space resolution [14, 15] E=Z =
LI/ A "
Bakelite
_\:F NY e ' readout st/rips e \Foam Grounded

plane
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Spectrometer

Thin Gap Chambers:
e Similar to multi-wire proportion chambers,
except cathode to anode gap is narrower
e 55% (C'O4, 45% n-pentane
e ~ 1.5ns x lem time-space resolution [14]

[1]
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Cathode Strip Chambers:
e multi-wire proportion chambers
e 50% Ar, 50% C'O9
e < 60um resolution [14]
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Monitored Drift Chambers:
e Varying length, 30mm diameter

drift tubes with 50um wire
e 91% A’I“, 4% n9, 5% CH4
e 80um resolution, but

triple layer gives 40um [14]
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Supersymmetry (SUSY) is a symmetry between fermions and

bosons, such that:

Q|fermion >~ |boson >— |sfermion >

Q|boson >~ |fermion >— |gaugino >
The SUSY algebra also requires:

[P, Q] = [P, Q=0

Which requires that my = m; and my, = my
Similarly, Q,QT commute with gauge transformations,

so all gquantum numbers (except spin) are shared
by the superpartners
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Problem

Scalar Loop Fermion Loop

/7N
| \
\ [

/

Ho___Y,____H H__ _H
A Y Y
Contributions:
A 2
Am%{—m 22A2 Am?2 :_PG/|22A%IV
— Toez [4m3in (Auv /ms)] + +1L 6m miln(Ayy /my) + ..

We expect Higgs to be at weak scale, myg ~ 100GeV

Butif Ay ~ O(Mpianck), Am?; ~ 1030GeV

In SUSY, loop-corrections are paired, and in unbroken SUSY, mg = m

and \ = |Y'|2, so each pair of superpartners contributes:

2
Amf,sl (AUV)
== In
87f mf,s

2 _
AmH—

If SUSY is broken, then the pairs give (to O(A%]V)):
Am3; ~ (X — |Y|2)A%]V

Butnow Ayy = Agysy ~ 1TeV [17, 18, 19]
10/35
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Running of the gauge coupling constants can be calculated to higher energy levels.
In SM, coupling strengths do not intersect
The inclusion of SUSY parameters causes a better intersection = unification

= Often cited as indirect argument in favor of SUSY
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Minimal Supersymmetric Standard [Viodel
As name implies, the MSSM is the minimal extension to
the SM that allows supersymmetry.

I The Hierarchy o Requires extension of Higgs sector into 2
Frobiem hyperchargeY = +1 Higgs doublets

O Unification

H, = (HS,H)), Hq=(Hy H;)
O Missing E

0 mSUGRA o R-Parity

Simulation

Analysis » General soft supersymmetry breaking [21, 17]
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rk Matter = Missing Er
R=1 R=-1

R=1 ¢+ q q

1-1=-1--1

R=-1N?

I <
Sy

R-Parity
R = (_1)3(B—L)—|—2S
Tied to conservation of baryon and lepton number

Violation of R-Parity = Proton Decay &

Models including R-parity result in a Lightest Supersymmetric Particle
= If neutral, the LSP is a dark matter candidate
Stable, neutral = invisible to detector = Missing E

So missing E is a signature to SUSY we will look for [22, 23]
13/35
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Most of the MSSM parameter space is ruled out by current measurements, as
MSSM introduces new sources of CP violations that should be measured.

MSUGRA = minimal Super Gravity model
Difficult to construct theory that breaks SUSY due to MSSM particles interaction

Breaking is moved to a hidden sector and gravity transmits the breaking down to the
weak scale.

In addition, contracts the 105 parameters (+19 SM) of the MSSM to five in mMSUGRA:

® mg - Common scalar mass at GUT scale

® my /5 - Common gaugino mass at GUT scale
® Ap - Common trilinear coupling parameter

® tang - ratio of Higgses’ VEVs at weak scale

® sgn(up) - sign of Higgsino mass contributuon [24]

14 /35
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Sparticle masses generated using ISAJET 7.74

Superpartner Masses at SU3 Point

Gaugino Masses in GeV/c?

Sfermion Masses in GeV/c?

w0
Ny
%0
N

0
Ng

Neutralinos

118.8
223.27
461.14
479.52

Charginos
223.34
477.25
Gluino

720.16

Expanded Higgs Sector

111.24

518.12

514.02

523.38

Sleptons
& 232.48
€r 154.63
Ve 216.74
h? 232.48
I 154.63
v, | 216.74
71 151.46
7 232.41
D 214.55

Squarks

665.49

644.79

670.41

643.63

665.49

644.79

670.41

643.63

440.26

670.07

605.93

642.00
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HERWIG = General purpose event generator [27].

o JIMMY = An add on to Herwig that includes multiparton
Interactions [27]

H Parameter Space » ALPGEN = Calculates “multiparton hard processes” at

[J Mass Spectrum

NLO, but then output must be hadronized by Pythia or
0 Signals and Jlmmy [28]

Backgrounds
[0 Backgrounds to

Be Produced » PYTHIA = General purpose event generator [29]

Analysis

The Future

BRCOI@&K

Physics & Astronomy Department 17/35



Simulation

ackgrounds

0 Parameter Space
[J Mass Spectrum
OmMC

[1 Signals and
Backgrounds

[0 Backgrounds to
Be Produced

Analysis

The Future

BRCOI@&K

Physics & Astronomy Department

Channel Cross Events at # Events Num. of Trileptons Generator
Section 100 1 fb_1 Generated atl fo— 1! Used
Signal
SU3 18.8 £ .3 pb 18,800 188,000 Approx. 130 Jimmy
Background
tt 483.2 pb 483,200 483,200 Approx. 120 Pythia
YA 11.0 4 .1 pb 11,000 11,000 Approx. 130 Jimmy
wz 27.7 £ .1pb 27,700 277,000 Approx. 600 Jimmy
wWw 70.4 £ .8 pb 70,400 70,400 Approx. 0 Jimmy
Z —ete™ 1650 + 30 pb 1,650,000 1,650,000 Approx. 0 Jimmy
Z - putu™ 1650 + 30 pb 1,650,000 1,650,000 Approx. 0 Jimmy
QCD Jets 90,800 pb 90,800,000 1,000,000 Aprox. 0 Alpgen/Herwig

18 /35
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Be Produced

Channel Cross Events at Events at Num. of Trileptons
Section 100 pb— 1! 1 o1 atl fb— 1!
W + Njets 1980 pb 198,000 1,980,000
Z — v's + jets 103 pb 10,300 103,000
bb + jets 242,000 pb 2,420,000 24,200,000
cc + jets 260,000 pb 2,600,000 26,000,000
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A trilepton search provides certain advantages for discovery of supersymmetry.
While the cross-section is small compared to other channels of search, the
backgrounds are expected to be easy to deal with.

Looking for events of basic form:

pp — N9 + CF + X — NOIHI— + NOU'%y, + X [30, 31]

Where the chargino and neutralino might decay via sleptons, or the weak force for
example.

Possibly combinations of the 3/ signal are eel,uuf, and eul
Currently, I'm concentrating on eef

Between 3/ requirement and kinematic cuts, expect to be able to cleanly isolate the
signal.

20/35



d Jet Py Cuts

Require 3 leptons with Pr > 40, 25, 15
Require 4 jets with Py > 15, lead > 65
Note: This is based on 1fb—! sample.
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after cuts =

Easy to see why people say the LHC

will spit out supersymmetry from the start

BROI@K

43.7 SUSY events, 14 SM events survive cuts.
Physics & Astronomy Department
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asurements

After isolating the signal, would like to make a measurement on SUSY mass
spectrum.

Depending on how decay chain is structured, different endpoint measurements for
the OS pair are possible.

If N9 — NQ(Z — £+e7), then M3e® = mgo — mygo

If “cascade” decay, N9 — £¢, then £ — NV¢, then:
M7 = mig\/(m%g — m%) : (m?7 — m?\??) Can combine ete= + ptpu= —eTpuT

to sharpen fit

Other options include fittig to curves for ¢4q or £q, taken together, can be used to feel
out the mass spectrum of SUSY[32]

400 T | T o
¥/t 26T ¢ 197
P 220,
pa 06,7
P 1.2
300

Histogram of My, forete™ + ptpu— —eTpF [? ]

Events/05 GeV/10¢ o

g

>
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More backgrouds
Isolation cuts on leptons

Angular Separation of lepton pairs
Invariant mass?

Other cuts?

Fake rates

End Point Measurements

Tau problem with ¢¢

Generalize analysis beyond SU3/mSUGRA
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ark Point Parameters

mq (GeV) my /2 (GeV) Ag (GeV) tan(B) sgn(p) Cross
Section
Coannihilation (SU1) 70 350 0 10 + 7.43 pb
Focus Point (SU2) 3550 300 0 10 + 4.86 pb
Bulk (SU3) 100 300 -300 6 + 18.59 pb
Low Mass (SU4) 200 160 -400 100 + 262 pb
Scan (SU5.1) 130 600 0 10 + .44 pb
Scan (SU5.1) 250 600 0 10 + .40 pb
Scan (SU5.1) 500 600 0 10 + .31 pb
Scan (SU6) 320 375 0 50 +
Su7
Scan (SU8.1) 210 360 0 40 + 6.44 pb
Scan (SU8.1) 215 360 0 40 + 6.40 pb
Scan (SU8.1) 225 360 0 40 + 6.32 pb

33, 26]
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SU1 - Coannihilation Point [25]
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SU2 - Focus Point[25]
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The Future

L psetn0 ~ mgfroton Zi=2,3 R mizl]-

If N's are ~ 1 and mg ~ 1TeV

= fractions of a second lifetime [18]
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